
 1

Evolutionary Programming and Gradual Typing in ECMAScript 41
(Tutorial)

29 November 2007

Lars T Hansen, Adobe Systems

(lhansen@adobe.com)

Introduction
ECMAScript 4 (ES4) provides a range of facilities for evolutionary programming – evolving a program in
stages from a simple script to an ever larger and more reliable software system. The most important facility
for evolutionary programming is the gradual type system; also important are namespaces and packages,
union types, generic functions, and reflection.

Evolutionary programming has two aspects: making the code more robust, and working around robustness
that gets in the way but cannot be removed.

The robustness of a program is improved by adding invariants to the program, or equivalently, restricting
the range of its behavior. Starting with an untyped program built on ad hoc extensible objects and hand-
coded data validation—a typical ES3 program—we can apply structural types and type annotations at key
points to make validation faster and more reliable. We can also apply structural types to objects in order to
fix their properties, thereby providing integrity and making type checking and data validation even faster.
We can rewrite ad hoc typed objects as instances of classes when a new level of integrity is required, and
when program-wide protocols are introduced the classes can even be constrained to match separately
defined interfaces. Finally, we can use packages to hide implementation details, and we can tag functions,
types, and variables with namespaces to prevent name clashes.

Working around robustness, on the other hand, usually means creating facilities that allow dissimilar
aspects of the program—often authored by different programmers—to be treated uniformly. Faced with
objects that are not of a desired type, but which behave like that type, we can wrap them so that they
masquerade as instances of the type. If we have a set of unrelated types that should be treated the same, we
can create a union type to give the set a name, effectively creating an after-the-fact interface. If we need to
define a function that behaves differently on different argument types but won’t be able to update its central
definition every time a new argument type is added, we can create a generic function to which methods,
specialized to new argument types, can be added later. Finally, reflection allows us to treat types as values
and to discover facts about the program itself at run-time.

This tutorial uses a simple library as a running example to illustrate the evolution of a program from the
ES3 “script” stage, via various levels of typing and rigor, to an ES4 package with greater guarantees of
integrity and better performance potential than the original code. We then look at how union types, generic
functions, and reflection can be used to work with a library whose code we can’t modify.

Example
Our example is “Mlib”, a simple library for a browser-embedded electronic mail facility. Mlib has three
public functions, send, receive, and get. The send function accepts a single mail message and sends it
to a server. The receive function retrieves a single mail message from the server, or a special “no mail”
object if there are no messages waiting. The get function returns a sent or received message by its ID; the
message may be cached locally or retrieved from the server. (We gloss over details of configuring Mlib
with information about the server, among other things.)

1 Based on the 2007-10-23 Proposed ECMAScript 4th Edition Language Overview, the (unpublished) 2007-09-20 Library
Specification draft, and the ES4 wiki; see http://www.ecmascript.org/. This paper uses the term “ES4” to denote the Proposed
ECMAScript 4 language. Details given in this paper are subject to future adjustments as ES4 evolves.

 2

Since Mlib is a library the public functions need to perform data validation on both the library client’s data
and data retrieved from the server.

There are two important data types. A message is an object with fields “to” (an array of addresses),
“from” (an address), “subject” (a string), and “body” (a string), and “id” (a nonnegative integer). An
address is an object with fields “at” (an array of two strings: the user name and the host name) and “name”
(a string).

Version 1 of our program—shown on the left in Listing 1, below—makes use of simple ES4 facilities like
uint and expression functions, but is otherwise ES3 code.

Structural Types for Data Validation
There is substantial noise in Version 1 from the data validation, so let’s get rid of it by annotating the
parameters of the API functions with constraints that perform the validation for us. ES4 provides structural
types to describe values: record types and array types, which are all we need for the moment, but also
function types and union types, which we will see later. There are also many predefined types in ES4, and
our program will use string and uint. The new program is Version 2, and it is shown on the right in
Listing 1, below.

Version 2 defines the types Addr and Msg. These are structural record types that are pretty much self-
describing: they look like object literals, but with type expressions in the value positions instead of the
usual value expressions. Version 2 also uses structural array types, which look like array literals but with
type expressions instead of value expressions.

The key facilitating feature in Version 2 is the type operator “like”, which is used to perform shape testing
of data.2 For reasons of backward compatibility with ES3, the type of an ES4 object literal like this:

{ to: [{at: ["es4-discuss","mozilla.com"], name: "ES4 forum"}],
 from: {at: ["lhansen","adobe.com"], name: "Lars"},
 subject: "ES4 tutorials available",
 body: "...",
 id: 10 }

isn’t Msg, but rather the empty object type {}, since the properties introduced in the literal are all deletable.
So if we want the send function to accept such a literal then the type constraint on the msg parameter must
be that msg is like Msg; without like the program would signal an error at run-time.

The result of a like test only holds until the datum is modified (just as is the case for the manually written
verification code in Version 1). No error is signalled even if the datum is later modified in a way that
would contradict the result of the earlier shape test. That is, the like test is really just an assertion, testing
that the datum looks a certain way at a certain time.

There are other, subtle changes in Version 2. The use of structural types has improved handleMessage:
where Version 1 would inspect any result field in the reply from the server to check for a “no data”
return, Version 2 requires the result field to be a string as well. (The operator “is” tests whether its
left operand is an instance of the type in its right operand.) On the other hand, the type annotation on the
parameter n to the function get is weaker than the old check: the old check would reject values that were
not already uint, whereas the new annotation allows any number type to be silently converted to uint.
(Annotations and conversions are discussed in greater detail later.)

2 This kind of type discipline is often known as “duck typing”, on the principle that if something walks like a duck and talks like a
duck, it is a duck. (This should not be confused with an older and now discredited type discipline, which says that if a woman floats
like a duck then she’s a witch. ES4 has no objects that float like ducks, but it does have floats that bewitch – decimals.) The
performance of duck typing is discussed later, but suffice it to say that the phrase that applies if you’re not a little careful is not
“getting all your ducks in a row”, but “sitting duck”. (Author ducks.)

 3

// Version 1

function send(msg) {
 validateMsg(msg)
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

function receive()
 handleMessage(-1)

function get(n) {
 if (!(uint(n) === n))
 throw new TypeError
 if (n in database)
 return database[n]
 return handleMessage(n)
}

var database = []

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (typeof msg != "object")
 throw new TypeError
 if (msg.result == "no data")
 return null
 validateMsg(msg)
 return database[msg.id] = msg
}

function validateMsg(msg) {
 function isObject(v)
 v != null && typeof v == "object"

 function isAddress(a)
 isObject(a) &&
 isObject(a.at) &&
 typeof a.at[0] == "string" &&
 typeof a.at[1] == "string" &&
 typeof a.name == "string"

 if (!(isObject(msg) &&
 isObject(msg.to) &&
 msg.to instanceof Array &&
 msg.to.every(isAddress) &&
 isAddress(msg.from) &&
 typeof msg.subject == "string" &&
 typeof msg.body == "string" &&
 typeof msg.id == "number" &&
 uint(msg.id) === msg.id))
 throw new TypeError
}

// Version 2

type Addr = { at: [string, string],
 name: string }
type Msg = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
 id: uint }

function send(msg: like Msg) {

 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

function receive()
 handleMessage(-1)

function get(n: uint) {

 if (n in database)
 return database[n]
 return handleMessage(n)
}

var database = []

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like { result: string } &&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return database[msg.id] = msg
 throw new TypeError
}

Listing 1 The initial ES3-style program (Version 1) and the same program using ES4 structural types to

perform data validation (Version 2)

 4

Alert readers will have noticed that the annotation on the function send in Version 2 requires msg to
contain a valid id field whose value will be overwritten immediately. It would be more natural just to
require the argument to send to have to, from, subject, and body properties. For the sake of brevity,
we’ll call the type with these four fields Msg0, and we will use it to constrain the parameter to send.
Making this change yields Version 2b, shown on the right in Listing 2.

// Version 2

type Addr = { at: [string, string],
 name: string }

type Msg = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
 id: uint }

function send(msg: like Msg) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

...

// Version 2b

type Addr = { at: [string, string],
 name: string }
type Msg0 = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
type Msg = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
 id: uint }

function send(msg: like Msg0) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

...

Listing 2 Using structural types (Version 2), and a relaxed structural interface to send (Version 2b)

Integrity Through Structural Types 1: Fixtures
One obvious weakness in Versions 1 and 2 is that data in the database are shared between the library and its
client, and the client can—accidentally or maliciously—modify the message structures of messages both
sent and received: it can remove fields, or it can store data of undesirable types in those fields. What we
want are fixtures: fields of the objects that can’t be removed, and whose types are known and enforced.

The library can enforce that the message objects it stores and returns always have the fields described by
the type Msg. The key is always to create objects that have the type Msg (that aren’t merely like Msg).
We can implement that strategy by modifying the functions send and handleMessage, as shown in
Version 3a (on the right in Listing 3, below).

The function copyMsg picks the untyped message apart (using the destructuring forms that are new in ES4)
and then constructs a new object that has the desired fixtures, creating a Msg that contains Addr objects.

An object can be given a structural record type in two ways. The type can be appended to the initializer as
an annotation: { at:..., name:... }: Addr. The function newAddr inside copyMsg uses this
technique. The type can also be the type argument of the new operator: new Msg(...). The function
copyMsg uses this technique. (The additional arguments to new are used to initialize the structure, and
must be in the same order as the fields are in the type definition.) Both can accomplish the same thing, but
sometimes one is more convenient than the other. In particular, the annotation syntax affects the deep
structure of the literal: If the literal has nested object (or array) initializers, a nested record (or array) type
will create fixtures in the nested objects as well as at the outermost level.

The situation is similar for array types, but with a twist. The type [int] means an array whose elements
are all restricted to int. The type [int,int], however, means an array whose elements 0 and 1 are
restricted to int (we call this type of an array a tuple). In other words, the case with one element is special.
The new operator can be used here too, as in new [int](3) to create an array of int of initial length 3.

 5

// Version 2b

...

function send(msg: like Msg0) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

...

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like { result: string } &&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return database[msg.id] = msg
 throw new TypeError
}

// Version 3a

...

function send(msg: like Msg0) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = copyMsg(msg)
}

...

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like { result: string } &&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return database[id] = copyMsg(msg)
 throw new TypeError
}

function copyMsg(msg) {

 function newAddr({at:[user,host],name})
 ({at: [user,host], name:name}: Addr)

 function mapAddrs(addrs) {
 var dst = new [Addr]
 for (var i=0; i < addrs.length; i++)
 dst[i] = newAddr(addrs[i])
 return dst
 }

 var {to,from,subject,body,id} = msg
 return new Msg(mapAddrs(to),
 newAddr(from),
 subject,
 body,
 id)
}

Listing 3 Sharing message data with the client code and the server (Version 2b), compared with

copying messages into data structures that have the same structural type but fixed fields with
known types (Version 3a)

Digression: The cost of like
Unlike an “is” type test, whose cost is often constant, the cost of a like is roughly proportional either to
the size of its right-hand type argument (for record types) or to the size of its left-hand value argument (for
array types). If the right-hand type is a record type then each field named in the type must be extracted
from the object on the left-hand side and the tested against the expected field type. If the right-hand type is
an array type then each array element must be read from the array on the left-hand side and tested against
the array’s base type. ES4 requires neither field nor element access to be performed in constant time, so the
cost of a like test can be worse than proportional to the number of values extracted.

On the other hand, the implementation can optimize like testing in several ways. For example, it can keep
a table that records compatibility between types so that individual field testing is not always necessary. In
Listing 3, if the client code calls send on an instance of Msg0 (and not just an ad hoc object) then an
implementation ought to be able to perform the check in constant time.

Digression: When is an object like an array type?
Arrays are very rich objects—they have large method suites and unusual behavior around length,
construction, and so on—so the conditions for an object to be like a structural array type are a little

 6

involved. Generally we say that if an object looks like an array, methods and all, then it is like an array
type, but the rules on what constitutes a method are loose.

Starting with the simple rules, structually typed array data are instances of hidden subtypes of Array.
Arguments of type [T] are compatible with type [*]—instances of the former can be stored in variables
annotated with the latter—but in general it is illegal to use an object of type [D] where [B] is required,
even if D is a subtype of B.

The like operator is more permissive. An object t of type [T] is like [P] if every array element of t is
like P. An object q of type Q (where Q is not an array type) is like [P] if q is like the predefined type
ArrayLike and every array element of q is like P. In turn, ArrayLike is a record type that requires a
length property of type uint and methods corresponding to the intrinsic methods of Array, but without
constraints on the signatures of those methods.

As a consequence of these rules, Vector.<T> is not of type [T], but it is like [T].

Integrity Through Structural Types 2: Wrappers
Another option available to us is to wrap the message objects so that their fields can’t be removed or given
values of different types. The change is in send and handleMessage, while copyMessage disappears.
Version 3b is shown on the right in Listing 4, below.

The operator wrap checks that its left operand value is like the right operand type – throwing a
TypeError if it is not; thus we can remove the explicit throw in handleMessage – and then constructs
an object that has fixtures like the right operand type. Accesses to the wrapper object result in accesses to
the wrapped object as well.

The trap here is that run-time errors may later be signalled by the wrapper if the wrapped object has
become inconsistent with the wrapper. That situation can arise if code that has unmediated access to the
wrapped object bypasses the wrapper when changing the object. This is the case in our code: the caller of
send has access to the object wrapped by send. Whether wrappers are the right solution depends on how
and when we expect the data to change – on purpose, or accidentally; and in the course of a call, or over
time.

// Version 2b

...

function send(msg: like Msg0) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

...

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like { result: string } &&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return database[msg.id] = msg
 throw new TypeError
}

// Version 3b

...

function send(msg: like Msg0) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg wrap Msg
}

...

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like { result: string } &&
 msg.result == "no data")
 return null

 return database[msg.id] = msg wrap Msg

}

Listing 4 Sharing message data with the client code and the server (Version 2b), compared with

wrapping messages in data structures that have the same structural type but fixed fields with
known types (Version 3b)

 7

Digression: Wrapping on entry
One idiom that we’re not using in our example is wrapping a data structure when a library API function is
called but being careful not to retain the wrapper after the call returns. Suppose we add a
validateAddresses method and an internal validateAddress helper method:

function validateAddresses(as: wrap [Addr])
 as.every(validateAddress)

function validateAddress(a: Addr)
 ...

Note how validateAddress can annotate its parameter with just the type name – it does not need to use
“like”. Yet the API function validateAddresses allows clients to pass ad-hoc data as long as those
data are reasonable.

The key is that as long as the library does not retain a reference to the wrapper, there is no chance of later
run-time errors if the client code updates the wrapped data structure in an incompatible way.

Digression: The cost of wrap
The cost of wrap is at least as bad as the cost of like, since a like test is required before the object can be
wrapped. If a wrapper must be created then it will be a new object that has all the fixtures of the type we
are wrapping to, but those fixtures may be implemented as getter/setter pairs and allocating them may be
more expensive than allocating normal properties. When a getter reads a value from the wrapped object,
that value may itself need to be wrapped, which includes another like test, and when a setter writes a
value, the value will go through a type check on entry to the setter.

Though it would seem that a naïve wrapper implementation turns linear-time operations like inorder tree
traversals into exponential-time operations because of the repeated recursive like tests, we are saved by
the fact that structural types cannot be recursive—the cost of a like test with a record type is bounded by
the size of the type, and is not related to the size of the structure.

Again, the implementation may be able to optimize away some tests, as outlined above for like, and
wrappers won’t be created for objects that already have the type of the wrapper. Implementations may use
representations that are more efficient that getter/setter pairs. Implementations may also be able to discover
quickly whether the wrapped object has changed and whether a new like test can be avoided.

Integrity Through Structural Types 3: Make it the Client’s Problem
So far we have assumed that the library must accept any reasonable data structure and then deal with it as
best it can. A more classical approach is to put the burden on the client by requiring the client to construct
data of known types. The client code may become more complicated as a result, and in situations where
the client code can’t be changed it can become impossible to integrate it with upgraded libraries.

Of course the “burden” does not come without benefits. The library becomes simpler and more reliable,
because the client guarantees the integrity of the data, relieving the library of that job. Also, compile-type
type checking can verify statically that the client and the library are handling the same type, something that
may be more difficult with like.

Version 3c (on the right in Listing 5) has a new send function, and the Msg0 type is no longer needed.

 8

// Version 2b

type Addr = { at: [string, string],
 name: string }
type Msg0 = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
type Msg = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
 id: uint }

function send(msg: like Msg0) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg wrap Msg
}

...

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like { result: string } &&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return database[msg.id] = msg
 throw new TypeError
}

// Version 3c

type Addr = { at: [string, string],
 name: string }

type Msg = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
 id: uint }

function send(msg: Msg) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

...

function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like { result: string } &&
 msg.result == "no data")
 return null

 return database[msg.id] = msg wrap Msg

}

Listing 5 Wrapping messages in data structures that have the same structural type but fixed fields with

known types (Version 3b) compared with making it the client’s problem (Version 3c)

Digression: Structural types
A vital point in the preceding discussions is that two structural types are equal when they have the same
structure. Their names or defining directives do not matter. (This contrasts with the definitions of nominal
types, like classes and interfaces, which introduce new, unique, named types.)

For example, the type names Msg and Addr do not have to be available to the client code, all the client code
needs in order to create objects with the right fixtures is to know the structure of the object to be created.
After that, the client code can apply its own structural type annotation. A function that constructs Addr
instances could look like this:

function makeAddr(user, host, name)
 ({ at: [user, host], name } : { at: [string,string], name: string })

The function makeAddr is the same as the function newAddr in Listing 3, above, but makeAddr does not
have access to the type Addr and applies its own compatible type instead. This is not necessarily good
programming style, but if Mlib does not export Addr it is a facility that gets the job done.

In fact, structural types are all about describing data that are “known” but whose type definition may not be
available because it was never written down, or because it was not exported from its defining module, or
because the data were generated by a separate program (as when Mlib receives an object from the mail
server), or because the data originated in an ES3 program that can’t be changed.

We’ve already seen that structural types can describe objects with named fields and arrays with array
elements. They can also describe functions and unions of other types:

 9

type Mapper = function (*, uint, Object):*
type AnyNumber = (int | uint | double | decimal | Number)

A function type describes the signature of a function: the number of arguments, their types, and the return
type.

A union type makes a single type out of a collection of other types, which may be unrelated to each other.
There are no instances of union types, so they are only useful for annotations and type testing. Commonly,
a function that can operate on numbers has parameters annotated by AnyNumber, such as the atan method
on the Math object:

function atan(x: AnyNumber): FloatNumber ...

We’ll look more at union types later in this tutorial.

A Complete API
We can now complete a typed API to Mlib by providing the API functions with return types.

// Version 3a

...

function send(msg: like Msg0) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = copyMsg(msg)
}

function receive()
 handleMessage(-1)

function get(n: uint) {
 if (n in database)
 return database[n]
 return handleMessage(n)
}

...

// Version 4

...

function send(msg: like Msg0): void {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = copyMsg(msg)
}

function receive(): Msg
 handleMessage(-1)

function get(n: uint): Msg {
 if (n in database)
 return database[n]
 return handleMessage(n)
}

...

Listing 6 Constraints only on function parameters (Version 3a) and constraints on return values in

addition (Version 4)

A key point in Version 4 (on the right in Listing 6, above) is that though we have added return types to
receive and get, we have not changed the types of handleMessage or database: those are still
unannotated. The return types on receive and get guarantee that these functions return values of the
correct type, but since receive and get obtain the values they return from untyped sources, the
implementation will check the types at run-time when receive and get return.

Digression: About Annotations
So far we have seen annotations used in several contexts: on parameters; on return types; and on the fields
of record types and the elements of array types. The meaning of an annotation is always at least an is test:
when a value is stored in an annotated field, the value is tested against the type as with is, and if the test
succeeds, the value is stored. (Otherwise a TypeError is thrown.) Sometimes, the annotation also implies
a conversion: all numeric types (int, uint, double, decimal, and Number) are interconvertible, as are
string and String, and boolean and Boolean. In fact, anything converts to boolean.

Annotations can also be used on variables, so we could easily imagine this:

var database : [Msg]

 10

Yet our programs are correct without annotating database, or handleMessage, or copyMsg. This ability
to introduce annotations gradually, and only to the extent necessary to attain the desired level of checking,
is key in making ES4 a language for evolutionary programming. The pattern that the preceding examples
have used is one of typed APIs, untyped code. API methods are fully annotated and therefore perform type
checking on input and output; private variables and functions remain untyped until the complexity of a
module requires types to be added for additional error checking.

The “typed APIs, untyped code” pattern may be seen as the natural end point for a program, but it may also
be just a stepping stone on the path to fully typed code, where every variable and parameter has a type
annotation, all objects are instances of named classes, and like and wrap are no longer used. (Of course,
typing being gradual in ES4, the client of a module can’t usually tell if the code behind a typed API is fully
typed, partially typed, or untyped.)

Prototype methods
Let’s introduce a new object type, the “Server”, to hold our methods; initially we will use an ES3 style
constructor function. A sketch of the code is shown as Version 6a, on the left in Listing 7, below.

Anyone who has programmed in ES3 knows the problems we’ll encounter: The prototype methods are not
protected from being changed, overridden, or deleted; code and data shared by the Server methods but not
meant for public access (like database) might need to be hidden somehow; the prototype methods can be
taken out of their context and moved to other objects, where they may wreak havoc or it may be possible to
trick them to reveal data; forgetting to add “this.” in the reference to a method breaks the program in
mysterious ways; the list goes on. Finally, though Server is a type in a logical sense, instances of Server
have the uninteresting type {}, as discussed earlier, and Server cannot be used as a type annotation.

Version 6b, on the right in Listing 7, attempts to solve some of these problems by using const methods in
the prototype (thus protecting them from being overwritten in the prototype and shadowed in the Server
instance), and by using a namespace “sp” (“server private”) to hide prototype methods and instance data
that are not meant to be publicly accessible.

Namespaces are special values that qualify names. I can have a definition of send in my namespace and
you can have one in yours, and they will be entirely distinct. Namespaces are created by namespace
directives (in Version 6b one is used to create the sp namespace), and the name of the namespace is then
used to qualify definitions.

A name in a namespace is referenced by prefixing the name with the namespace: sp::copyMsg, for
example. The use namespace pragma opens a namespace in the block scope of the pragma so that the
qualification can be omitted as long as the name is unambiguous. The send method uses only the name
copyMsg, but because the namespace sp is open the reference is really to sp::copyMsg.

So far so good, you say. But Version 6b’s namespace sp is not protected—other code can open it too, and
gain access to our “private” names—and the properties on the Server object itself, database and host, are
in any case enumerable and the namespace value can therefore be obtained through enumeration. We can
make those properties DontEnum (ES4 has a facility for that) and we can hide sp in a closure, ES3 style.
Yet even if we do all that—and end up with code even more complex than Version 6b—the “public”
prototype methods can still be used out of their context, and Server will still not be a useful type for
annotations. Those two problems aren’t solvable in our structural world. Instead, we need to look at
classes.

 11

// Version 6a

function Server(host:string) {
 this.host = host
 this.database = []
}

Server.prototype = {
 send:
 function (msg: like Msg0): void {
 msg.id =
 sendToServer(JSON.encode(msg))
 this.database[msg.id] =
 this.copyMsg(msg)
 },
 receive:
 function (): Msg
 this.handleMessage(-1),
 get:
 function (n: uint): Msg {
 if (n in this.database)
 return this.database[n]
 return this.handleMessage(n)
 },
 handleMessage:
 function (n) {
 var msg =
 JSON.decode(
 receiveFromServer(n))
 if (msg is like {result: string} &&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return this.database[id] =
 this.copyMsg(msg)
 throw new TypeError
 },
 copyMsg:
 function (msg) {
 ...
 }
}

// Version 6b

namespace sp

function Server(host:string) {
 this.sp::host = host
 this.sp::database = []
}
{
 use namespace sp

 Server.prototype = {
 const send:
 function (msg: like Msg0): void {
 msg.id =
 sendToServer(JSON.encode(msg))
 this.database[msg.id] =
 this.copyMsg(msg)
 },
 const receive:
 function (): Msg
 this.handleMessage(-1),
 const get:
 function (n: uint): Msg {
 if (n in this.database)
 return this.database[n]
 return this.handleMessage(n)
 },
 const sp::handleMessage:
 function (n) {
 var msg =
 JSON.decode(
 receiveFromServer(n))
 if (msg is like {result:string}&&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return this.database[id] =
 this.copyMsg(msg)
 throw new TypeError
 },
 const sp::copyMsg:
 function (msg) {
 ...
 }
 }
}

Listing 7 ES3 style constructor functions (Version 6a), with read-only, namespaced fixture methods on

the prototype to provide better integrity (Version 6b)

 12

Classes
A class definition is a syntactic shorthand that combines object construction, type definition, and constant
method definition. Classes hide private data with implicit namespaces, prevent out-of-context use of
methods, and class names can be used as type annotations. A class version of Server appears on the right
in Listing 8, below.

// Version 6b

namespace sp

function Server(host:string) {
 this.sp::host = host
 this.sp::database = []
}
{
 use namespace sp

 Server.prototype = {
 const send:
 function (msg: like Msg0): void {
 msg.id =
 sendToServer(JSON.encode(msg))
 this.database[msg.id] =
 this.copyMsg(msg)
 },
 const receive:
 function (): Msg
 this.handleMessage(-1),
 const get:
 function (n: uint): Msg {
 if (n in this.database)
 return this.database[n]
 return this.handleMessage(n)
 },
 const sp::handleMessage:
 function (n) {
 var msg =
 JSON.decode(
 receiveFromServer(n))
 if (msg is like {result:string}&&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return this.database[id] =
 this.copyMsg(msg)
 throw new TypeError
 },
 const sp::copyMsg:
 function (msg) {
 ...
 }
 }
}

// Version 7a

class Server {
 function Server(h:string) {
 host = h
 }

 private const database = []
 private const host

 function send(msg: like Msg0): void {
 msg.id =
 sendToServer(JSON.encode(msg))
 database[msg.id] = copyMsg(msg)
 }

 function receive(): Msg
 handleMessage(-1)

 function get(n: uint): Msg {
 if (n in database)
 return database[n]
 return handleMessage(n)
 }

 private function handleMessage(n) {
 var msg =
 JSON.decode(receiveFromServer(n))
 if (msg is like {result:string} &&
 msg.result == "no data")
 return null
 if (msg is like Msg)
 return database[id] = copyMsg(msg)
 throw new TypeError
 }

 private function copyMsg(msg) {
 ...
 }
}

Listing 8 Defining a data type using ES3 style constructor functions (Version 6b) and ES4 style classes

(Version 7a)

Comparing the class definition on the right in Listing 8 to the ES3 style definition on the left, there are
many obvious differences. Foremost, the class definition has less clutter. Phrases that are explicit in the
ES3 version—the extensive use of this, the fact that methods are const, the fact that there is a private
namespace that is open by default—are implicit in the ES4 version. Simplifying further, methods in the
ES4 version are defined by the same syntax as are top-level functions, whereas they are defined using a
property-value syntax in the ES3 version, obscuring the fact that they are methods.

 13

Operationally, the ES3 and ES4 versions are not quite equivalent:
• The ES4 methods will become properties on the class instance, whereas the ES3 methods are

properties on the prototype object. Since the ES3 prototype properties are const, however,
referencing them on the instance will always result in the method values from the prototype.

• The ES4 methods are DontEnum; the ES3 methods are enumerable.
• The ES4 instance variables—database and host—are DontDelete and ReadOnly and can

neither be removed nor altered after initialization. The ES3 instance variables are neither; if the
client code can gain access to the namespace “sp” then the instance variables can be altered or
removed.

• The ES4 methods are bound to their instance. Reading e.g. the receive property of an instance
of the ES4 class yields a function value which, when invoked, always has the same this value:
the object from which the method was extracted.

• The ES4 instances can’t be extended dynamically with new properties. To make instances
extensible, the class definition must have the attribute dynamic. (Every class has a prototype
object, like in ES3, and the prototype object can always be extended dynamically. A new property
on the prototype will be visible to all instances, as in ES3.)

It is possible to express bound methods in ES3, but the idioms for doing so are clumsy. Using ES4 style
const properties it is possible to make properties DontDelete and ReadOnly, but not at the same time as
using the normal ES3 constructor functionality to install a prototype into a fresh object. There is no way in
ES3 to make properties DontEnum, and no way to make objects non-dynamic.

In sum, ES4 classes offer better integrity at substantially greater convenience than do ES3 constructor
functions. ES4 programs using classes are therefore more reliable than comparable ES3 programs.

Packaging It Up: Packages and Namespaces
If we go back to our earlier program where all the definitions were global, how can we maintain the privacy
and integrity of our internal definitions, handleMessage, database, and so on. A client program that
uses our library could easily3 have defined names like that itself. We have already seen how namespaces
can be used to make similar names distinct. Listing 9 below shows how namespaces and another ES4
facility—packages—can be used to similar effects to hide private names.

Packages, shown in Version 5a, are similar to packages in Java. A package has a name comprised of a list
of identifiers separated by “.”. The package has public definitions (those qualified as public) and
internal definitions (all the others), and importing a package makes some or all of the public definitions
visible in the importing scope. Finally, the full package name can be used to qualify any name. Two
snippets of client code demonstrate the use of packages.

Version 5b uses namespaces to accomplish the same result as the packages in 5a. New in this program is
the use default namespace pragma, which names the namespace that annotates definitions that do not
have an explicit namespace annotation: The definition of Addr really defines mail_private::Addr.
Two snippets of client code demonstrate the use of namespace.

Digression: Packages are Namespaces, Simplified
Packages are syntactic sugar for namespaces, and the general effect of a package can be accomplished by
using namespaces explicitly. As Listing 9 shows, packages can be more convenient: there are fewer names
to manage, fewer directives to write, and public stands out clearly regardless of what the package is
called, whereas if the namespace mechanism is used then the namespace meant for public use is different
from module to module. Packages can also be defined in disjoint chunks of source code, and the compiler
takes care of hiding the package’s internal namespace; using namespaces directly, this hiding must be
handled manually.

3 On the world-wide web, pretty much anything is bound to happen sooner or later. Somebody will run into this problem.

 14

Namespaces are more general than packages, though: they are not just for hiding, but also for tagging
names, so that multiple names can coexist easily, or so that names can be given an informative
qualification. The ES4 predefined classes could have reserved a single namespace for system use, but
reserves several, each with its own purpose: “intrinsic” for early-bindable names, “reflect” for the
reflection API, “meta” for system hooks, and “iterator” for the interator and generator facilities. The
result is not just that they can be combined, but that the reader knows what category of method she’s
looking at.

// Version 5a

package org.ecmascript.mlib {

 type Addr = ...
 type Msg0 = ...
 type Msg = ...

 public function send(msg: like Msg0)
 ...
 public function receive(): Msg ...
 public function get(n: uint): Msg ...

 var database = ...
 function handleMessage(n) ...
 function copyMsg(msg) ...
}

// Client code

import org.ecmascript.mlib.*
send({ from: { ... },
 to: [...],
 subject: ...,
 body: ... })
var msg = receive()

// Client code (version 2)

org.ecmascript.mlib.send({ from: { ... },
 to: [...],
 subject: ...,
 body: ... })
var msg = org.ecmascript.mlib.receive()

// Version 5b

namespace mlib

{
 namespace mail_private

 use default namespace mail_private
 use namespace mlib, mail_private

 type Addr = ...
 type Msg0 = ...
 type Msg = ...

 mlib function send(msg: like Msg0)
 ...
 mlib function receive(): Msg ...
 mlib function get(n: uint): Msg ...

 var database = ...
 function handleMessage(n) ...
 function copyMsg(msg) ...
}

// Client code (version 1)

use namespace mlib
send({ from: { ... },
 to: [...],
 subject: ...,
 body: ... })
var msg = receive()

// Client code (version 2)

mlib::send({ from: { ... },
 to: [...],
 subject: ...,
 body: ... })
var msg = mlib::receive()

Listing 9 Name hiding: Version 4 modified to hide private names with packages (Version 5a) and

namespaces (Version 5b)

Interfaces and Union Types
Going back to our mail server class, if we anticipate that there might be multiple server implementations,
we can define an interface, call it IServer, that describes all the servers. The interface has method
signatures, but no method bodies. Each server class—HttpMailServer, TcpMailServer—then declares
that it implements IServer, and the class definition provides bodies for the methods.

The use of interfaces is shown on the left in Listing 10, below. That listing also illustrates that the interface
name can be used as an annotation on variables and parameters, effectively stating that any type that

 15

implements IServer is an acceptable value. Interfaces should be familiar to anyone who has programmed
in Java.

Suppose that, on the contrary, we we did not have the foresight to anticipate multiple server implemen-
tations, and we did not define the interface IServer. Maybe we even figured there would not be other
kinds of servers than HttpMailServer. But then another programmer implemented TcpMailServer,
which is compatible with HttpMailServer but defined as an unrelated class, and we would like to use it.
The situation should not be unfamiliar to anyone who has worked on a large program.

If we want to use both servers in a program then we would like to treat them the same (since they are
compatible), and we would like to use type annotations for greater reliability. We could change the source
code—define the IServer interface and declare each server to implement that—but that’s not always
desirable or possible. We could try defining IServer as a record type, but as we’ve seen, record types
cannot always capture the subtleties of classes. A union type works better, because it names a collection of
unrelated types.

The right column of Listing 10 illustrates how a union type called IServer can be defined after the fact
and used to annotate variables and parameters, in the same way the interface type IServer was used.

// server.es

interface IServer
{
 function send(msg: like Msg0): void
 function receive(): Msg
 function get(n: uint): Msg
}

// http.es

class HttpMailServer implements IServer {
 ...
}

// tcp.es

class TcpMailServer implements IServer {
 ...
}

// Client code

var myServer: IServer = ...
function addServer(srv: IServer) ...

// http.es

class HttpMailServer {
 ...
}

// tcp.es

class TcpMailServer {
 ...
}

// Client code

type IServer =
 (HttpMailServer | TcpMailServer)

var myServer: IServer = ...
function addServer(srv: IServer) ...

Listing 10 Classes implementing an interface (left) and unrelated classes collected as a union type (right)

Generic Functions
Software systems evolve over time and not always in predictable ways, and often consist of components
created by several authors. Suppose we’ll be builing a mail application that makes use of server
components from several sources. All of the servers implement IServer, and in addition they all provide
a connection status facility. The problem is that the connection status facilities are all different—IServer
does not define it—and yet we’d like our mail application to use a single API to query a server’s status.
Among the several ways to solve the problem—editing the source code, wrapping each server object in a
façade, writing a global function that tests the type of the server object and performs the appropriate action
(illustrated on the left in Listing 11, below), adding a method to each server’s prototype object—we can
implement the new API non-invasively as a generic function.

 16

Generic functions are shown on the right in Listing 11. First we define the generic function in a central
location—it is body-less, the actual body is comprised of methods that will be added later. The generic
function stat takes a single argument that is constrained to be an instance of IServer.

Then we add a method to stat for each server type. The methods are added in a distributed fashion; in our
program there is a file containing auxiliary code for each server type (e.g., httpaux.es for the
HttpMailServer), and that file that is the natural home for methods operating on that server. The
methods are not aware of each other, and when a new server is added to the system, a new stat method is
defined along with the server’s auxiliary code.

(At this time, generic functions have a limitation: they only dispatch on class, interface, and union types,
not on record or array types.)

// mailapp.es

function stat(srv: IServer) {
 switch type (srv) {
 case (h: HttpMailServer) {
 ...
 }
 case (t: TcpMailServer) {
 ...
 }
 case (x: *) {
 throw new TypeError
 }
 }
}

// Client code

var srv: IServer = ...
var status = stat(srv)

// mailapp.es

generic function stat(srv: IServer);

// httpaux.es

generic function stat(h: HttpMailServer){
 ...
}

// tcpaux.es

generic function stat(t: TcpMailServer){
 ...
}

// Client code

var srv: IServer = ...
var status = stat(srv)

Listing 11 Adding a type-dispatching function after the fact, as a centralized function (left) and as an
equivalent generic function (right)

Digression: multi-way dispatch
Generic functions are more powerful than the stat example reveals. Unlike class and prototype methods,
which select the concrete method based only on the type of the receiver object, a generic function selects
the concrete method based on all the argument types. We can use this in our mail application. Suppose we
add support for a a new type of addresses, but only some servers support it directly. The generic function
useServer (Listing 12, below) tests whether a server can send to a particular address (and otherwise
redirects it to a slower proxy server), and is just a multi-way type dispatch.

generic function useServer(server, addr);

generic function useServer(server:*, addr:*)
 g_proxyServer

generic function useServer(server: SmtpMailServer, addr:*)
 server

generic function useServer(server: TcpMailServer, addr: LocalAddr)
 server

Listing 12 Multi-way type dispatch in generic functions

The generic function provides a default behavior where the arguments are unconstrained (“*”); that action
is to redirect the message. Then we add the fact that SmtpMailServer can handle any address, and that
TcpMailServer can handle LocalAddr type addresses (whatever they may be).

 17

Reflection
The term “reflection” is used to describe a number of loosely related facilities in ES4. Most of these are
related to inspecting data and types:

• The for-in loop enumerates the “enumerable” properties of an object and its prototypes.
• The propertyIsEnumerable method tests whether a property is enumerable, and can be used to

change the property’s enumerability status.
• The in operator tests whether an object or its prototypes contains a property.
• The hasOwnProperty method tests whether an object itself contains a property.
• Types are available as run-time values: Object is itself an object. Collectively, objects that

represent types are called type meta-objects. A type meta-object always exports an appropriate,
known interface. The most general such interface is Type, which provides operations such as
isSubtypeOf and isLikeType. Subinterfaces of Type include NominalType (with its own
subinterfaces ClassType and InterfaceType), RecordType, ArrayType, FunctionType
and UnionType. Object implements ClassType; the type {x:int} implements RecordType.

• The global function typeOf returns the type meta-object for its argument value.
• The operator “type” creates type meta-objects from type expressions: type {x:int} yields a

type meta-object that implements RecordType.
• The operator “new” can be applied to arbitrary type meta-objects at run time.

All of the type meta-object interfaces, their methods, and the global typeOf function are defined in the
namespace “reflect”.

Reflection is useful mainly when a program is manipulating objects of an unknown or uncertain type, or
when types are not available until run-time. As a simple example (Listing 13, below), suppose the mail
program has a factory for server components. The addServer method accepts an IServer class object,
but the class will be instantiated by the factory and the factory will need to know how to do this. Recently
it became necessary to extend the constructor argument list from two to four arguments, but some server
components—some of them not even maintained by us—haven’t changed yet. We’ll use reflection to
discover how to construct a server instance from a class object.

function addServer(srvClass) {
 use namespace reflect
 var clsName = srvClass.name()
 for (let m in srvClass.staticMembers()) {
 if (m is FunctionType && m.name() == clsName) {
 let nargs = 0
 for (let a in m.argTypes())
 nargs++
 }
 }
 serverDatabase.push({ class:srvClass, newConstructor:nargs == 4 })
}

Listing 13 Using reflection to discover whether a constructor takes four arguments

The reflect::staticMembers method on ClassType objects returns an iterator across the
static members of the class (optionally taking a set of namespaces; the default is the set consisting
just of the public namespace). The for-in loop extracts all values from this iterator.

 18

Change Log

29-Nov-2007 Initial version.

Licensing terms, Conditions, and Copyright

The following licensing terms and conditions apply to this Tutorial.

1. This Tutorial is made available to all interested persons on the same terms as Ecma makes available
its standards and technical reports, as set forth at http://www.ecma-international.org/publications/.

2. All liability and responsibility for any use of this Tutorial rests with the user, and not with any of the
parties who contribute to, or who own or hold any copyright in, this Tutorial.

3. THIS TUTORIAL IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS TUTORIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End of Terms and Conditions

Copyright © 2007 Adobe Systems Inc., The Mozilla Foundation, Opera Software ASA, and others.

